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This paper presents a methodology based on the application of dynamic artificial neural networks
(DANNs) for modeling batch reactors. The network structure was designed by a specific method, called
leave-one-out cross-validation. In order to reduce the number of input parameters, the multiway princi-
pal component analysis (MPCA) was employed. As a case study, sequencing batch reactor was selected to
examine the suggested procedure. The results of DANN model were compared to the experimental data,
odeling
atch reactors
ynamic neural network
rinciple component analysis (PCA)
equencing batch reactor (SBR)

extracted from the literature. Different statistical tools were used as the evaluation criteria for this com-
parison. The relative error of training and testing sets were 2.11% and 2.6%, respectively. The regression
between the network outputs and the experimental data was more than 0.95. Therefore, the model devel-
oped in this work has an acceptable generalization capability and accuracy. In addition, it was proved
that the implementation of MPCA with dynamic neural network could enhance the model performance.

ison
ende
Furthermore, the compar
revealed that the recomm

. Introduction

The use of artificial neural networks (ANNs) has been demon-
trated to be successful in a number of applications involving
unction approximation, due to their ability to map highly non-
inear and time depending behaviors [1]. Neural networks can be
lassified into dynamic and static categories. Dynamic networks are
enerally more powerful. Since dynamic networks have memory,
hey can be trained to learn sequential or time varying patterns [2].

Principle component analysis (PCA) is a tool for data com-
ression and information extraction in order to find different
ombinations of the variables or factors that describe major trends
n a data set [3]. The maximum variability of the original multivari-
te data set is represented by the first principal component (PC), and
he second one represents the maximum variances of the residual
ata set. Then, the third one represents the most important vari-
bility of the next residual data set, and so forth. Statheropoulos et
l. and Dong and McAvoy have described the algorithm of PCA in
etail in their papers [4,5].

Relative to continuous processes, batch data have an added

imension of the batch number in addition to the measured
ariables and sampling times. Therefore, the basic method of con-
entional PCA is not directly applicable to batch processes. Nomikos
nd MacGregor presented the MPCA approach for batch processes,
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between the DANN model predictions with those of a mechanistic model
d model was over two and half times more accurate.

© 2010 Elsevier B.V. All rights reserved.

which is an extension of PCA for three-dimensional batch data. The
objective of MPCA is to decompose a three-way matrix (X- ) into a
large two-dimensional matrix (X) [6].

Sequencing batch reactor (SBR) is among the most complicated
batch processes. SBRs have made significant progress in the past
two decades with increasing use in the wastewater treatment. In its
simplest form, a SBR system consists of a single vessel in which the
periods of filling, reacting, settling, drawing and idling sequentially
take place [7].

A mathematical model has been developed for the SBR activated
sludge system by Sun, which is based on the standard activated
sludge models of Lawrence and McCarty and IAWPRC [7]. The
most significant advantage of this model is that it expresses sol-
uble microbial products (SMP) formed from substrate metabolism
and released from activated sludge decay. It also classifies differ-
ent basic chemical oxygen demand (COD) categories based on their
biodegradability. Moreover, total COD is divided into two parts: sol-
uble and insoluble. The soluble part is further subdivided into easy
to biodegradable substrates (EBS), difficult to biodegradable sub-
strates (DBS) and biologically inert organic materials (IOM). The
classification of COD makes it possible to describe the degradation
process of organic substrates more precisely. The EBS degradation
followed Monod kinetics and DBS degradation followed first order

kinetics. There are several variables as properties, kinetic and sto-
ichiometric parameters in the Sun’s model [7]. The modeling of
bioprocesses such as SBR is traditionally based on balance equa-
tions together with rate equations for microbial growth, substrate
consumption and product formation. Since microbial reactions are

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:shahrokh@iust.ac.ir
dx.doi.org/10.1016/j.cej.2010.02.053
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2.2.2. Neural network design with the aid of cross-validation
When designing a neural network model, one of the main pur-

poses is to attain acceptable generalization ability. To obtain this
goal, selecting the right number of layers and neurons in the net-

Table 1
Types of unfolding the three-way data array.

Type Direction
of
unfolding

Structure of
matrix X

Dimension of matrix
X in SBR process

A Variable IK × J 154 × 12
96 M.N. Kashani, S. Shahhosseini / Chemic

onlinear, time-variable with a complex nature, empirical model-
ng of bioreactors has shown some limitations [7–9].

Aguado et al. compared different models with the use of prin-
ipal component regression (PCR), partial least squares (PLS) and
rtificial neural networks [10–12]. Zhang combined the individual
eural networks to form a multiple network, termed as a boot-
trap aggregated network (BAGNET), to improve the robustness
nd estimation accuracy of nonlinear models built from a limited
mount of data with principal components using PCR to calculate
he combination weights [13,14]. The other studies indicate that
onsideration of statistical principles in the ANN model building
rocess may improve the modeling performance [15]. For instance,
rincipal components analysis can be used for pruning ANNs and

mproving nonlinear mapping [16,17]. The use of ANNs in combi-
ation with PCA has been shown to have some benefits [17,18].

The aim of this research is to introduce a detailed procedure
or modeling the batch reactors with dynamic neural networks
nstead of mechanistic mathematical models. The network archi-
ecture was selected by a specific method, called leave-one-out
ross-validation (LOOCV), which enhances the generalization abil-
ty of the model [2]. The delay between the inputs and outputs of
he dynamic network was calculated using correlation coefficient

atrix [2]. In order to combine input parameters and reduce the
umber of them, MPCA technique was used. As a case study, a SBR
eural network model was developed using the proposed method-
logy. The results of this model were compared with those of a
echanistic model and the experimental data.

. Modeling

.1. Batch process data and unfolding methods

To clarify the nature of the available data, consider a typical
atch run data as shown in matrix X. The multivariate data can
e organized in J variables and K samples (observations) per batch:

=

⎡
⎢⎢⎣

x11 x12 . . . x1J

x21 x22 . . . x2J

. . . . . .

. . . . . .
xK1 xK2 . . . xKJ

⎤
⎥⎥⎦ j = 1, 2, . . . , J and k = 1, 2, . . . , K

(1)

imilar data exist for other batch runs, where each batch is num-
ered from 1 to I (i = 1, 2, . . ., I). Batch numbers can be added to
he matrix as its third dimension. Therefore, all the data can be
ummarized in the X- (I × J × K) array as illustrated in Fig. 1. The
ata of several batch runs can be organized in a three-dimensional
atrix (X- ). A method, which can decompose the three-dimensional

- into a large two-dimensional matrix (X) is MPCA, which is statis-
ically and algorithmically consistent with the principal component
nalysis and has the same goals and benefits [6,19,20,21,22].

Fig. 1 illustrates how a three-way data matrix (X- ) can be
ecomposed to a two-way data matrix X. Different batch runs are
rganized along the vertical axis, the measured variables along
he horizontal axis, and their time evolution occupies the third
imension. Each horizontal slice of this array is a (J × K) data matrix
epresenting the time histories or trajectories for all variables of a
ingle batch (i). Each vertical slice is a (I × J) matrix representing
he values of all the variables for all of the batches at a time (k)
6,23,24].
Six possible methods of unfolding a three-way data array X- are
escribed in Table 1 [25]. X- contains vertical slices (I) side by side to
he right, starting with one, corresponding to the first time inter-
al. Each of the six possible rearrangements of the data array X-
orresponds to looking at a different type of variability.
Fig. 1. Decomposing three-way batch process data to two-way array with variable
wise unfolding method type A.

Type A unfolding is a method to change the three-way array
into a two-way matrix of size (IK × J) by preserving the variable
direction, as shown in Fig. 1 [26,27]. It was used in this research.
The batch and time wise unfolding were not considered in order to
avoid model over fitting [28].

2.2. Dynamic neural network architecture

In this study, an itemized methodology has been applied to
select the optimized structure of the dynamic neural networks with
generalization ability in order to model batch reactors.

2.2.1. Topology of dynamic neural network
The nonlinear autoregressive network with exogenous inputs

(NARX) is a recurrent dynamic network, with feedback connections
including particular layers of the network. Since the true output is
attainable during the training of the network, the true output was
fed to the network instead of feeding back the estimated output, as
shown in Fig. 2. Where, y(t) is the true output or the target of the
network and u(t) and ŷ(t) are the independent input and predicted
output vector of the network, respectively. Applying y(t) increases
the accuracy of the network. In addition, the resulting network has
an entirely feed forward architecture, and static back propagation
can be utilized for training [2].
B Time JI × K 168 × 11
C Time IJ × K 168 × 11
D Batch I × KJ 14 × 132
E Batch I × JK 14 × 132
F Variable J × IK 12 × 154
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Fig. 2. Series-parallel architecture of NARX network.

ork structure is crucial. Since it has been reported in several
eferences that any complex function can be approximated by only
ne layer, under the circumstances that, the adequate degrees of
reedom can be supplied by changing the number of hidden neu-
ons, the model was built with one hidden layer [2,29].

At this point, different network structures created by varying
he number of neurons in the hidden layer, and leave-one-out
ross-validation technique were used to find the optimal number
f the hidden neurons. Fig. 3 shows how the experimental data of
4 batches are divided to training, validation and testing subsets
ccording to the leave-one-out cross-validation approach.

Therefore, in each trial two values of RMSE were calculated. The
rst was RMSE t that is the average of root mean squared error for
raining parts of one trial and the other is RMSE loocv, that is the
oot mean squared error for one batch that was left out for valida-
ion according to leave-one-out cross-validation method. After this

ethod is repeated for all of the N batches, RMSE t and RMSE loocv
re calculated that represent the average of RMSE t for training
arts and the average of RMSE loocv for all of the batches that were

eft out for validation of all trials, respectively. Fig. 4 illustrates a
owchart of this procedure. It shows early stopping concept was
sed to stop the training. In this manner, the network training is
topped, upon the error of validation batches increases for a speci-
ed number of consecutive iterations (here 6 iterations).

Finally, by plotting RMSE t and RMSE loocv versus the number of

idden neurons, the best number of hidden neurons was found. The
lots indicated a gradual reduction of RMSE t with the increase in
he number of hidden neurons. However, the plot of RMSE loocv had
minimum, which corresponded to an optimal number of hidden
eurons.

Fig. 3. Demonstration of leave-one-out cross-validation method and divi
ineering Journal 159 (2010) 195–202 197

2.3. Selection of input variables and implementation of MPCA

Table 2 demonstrates the characteristic, kinetic and stoichio-
metric variables used in Sun’s model. More details could be
found in the reference published by Sun [7]. It is clear from this
table that many parameters are needed to be estimated to apply
Sun’s model for SBR. Sometimes, it is arduous to utilize these
kind of models since they are highly mathematical or compli-
cated in their expressions that their parameters are difficult to
estimate.

In this research, in order to reduce the number of these vari-
ables and introduce compressed newer ones as input vectors of
DANN, a preprocessing procedure was implemented on the vari-
ables of SBR model presented by Sun [7] for which a flowchart is
presented in Fig. 5. In agreement with Fig. 5, after removing the con-
stant variables during an operational cycle, the correlation analysis
was carried out. By this analysis, the input variables with a remark-
able linkage between them and output variables are selected to
estimate the output parameters in DANN.

In accordance to the series-parallel architecture of NARX net-
work (Fig. 2), there are two different categories of input vectors for
this structure. y(t) as dependent input (regressed output) variable
vector, is the first category. This vector contains S and VSS con-
centrations in this work. The input vector, y(t), is produced when
the three-dimensional matrix of (X- ) with the size of (14 × 2 × 11)
unfolds to a two-dimensional array with the size of (154 × 2).

u(t) in the position of independent input (exogenous input)
variable vector, is the second category. The MPCA algorithm was
applied to a SBR three-way data array for this kind of variables.
The dimensions of the array were 14 × 12 × 11. In this array, K = 11
that is the number of time instants throughout the batch (sam-
ple), J = 12 that is the number of process variables, and I = 14 that
is the historical data set. The three-way matrix (X- ) of the batch
process data was unfolded variable wise (type A of Table 1) to pro-
duce a two-dimensional data matrix (X) with the size of (154 × 12)
as demonstrated in Fig. 1. Afterwards, PCA was performed on the
matrix (X) to form the new compressed variables entitled the prin-
ciple component (PC) variables.

Fig. 6 depicts the variance represented by each PC and the total
variance. The model with 6 PCs, represent 96.92% of the total vari-

ability of all previous 12 variables. Therefore, the model was built
using only 6 principal components as independent input vector.
Consequently, the resulting array was a matrix with the size of
(154 × 6). From Table 3 it is evident that using one principal com-
ponent can represent 39.33% of the total variance, while employing

sions of the 14 batches for training, validation and testing subsets.
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Table 2
Variables of SBR model presented by Sun [7].

No Parameters Typical values Units

1 Soluble COD concentration in influent: S0 14.13–65.9 mg/l
2 Concentration of VSS in influent: XV0 657 –10,502 mg/l
3 Influent flow rate: Q 5.3 h−1

4 Volume of the reactor: V 4 l
5 Fraction of EBS: f1 0.31 ± 0.011 Dimensionless
6 Fraction of DBS: f2 0.65 ± 0.021 Dimensionless
7 Fraction of IOM: f3 0.02 ± 0.006 Dimensionless
8 Rate constants for EBS: k1 11–13 d−1

9 Rate constants for DBS: k2 0.07–0.09 d−1

10 Half velocity constant for EBS degradation: Ks1 87–100 mg/l
11 Half velocity constant for DBS degradation: Ks2 0.68–1.76 mg/l
12 Fractions of EBS released from sludge endogenous decay: fx1 0.93–0.96 Dimensionless
13 Fractions of DBS released from sludge endogenous decay: fx2 0.0 Dimensionless
14 Fractions of IOM released from sludge endogenous decay: fx3 0.04–0.07 Dimensionless
15 Conversion coefficient for soluble COD from VSS: �X 0.01–0.05 Dimensionless
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16 Conversion coefficient for soluble COD from UAP: �S

17 Rate constant of endogenous decay: ke

18 Yield factor of mg biomass/mg COD: Y
19 Constant for switch function to limit the degradation o

wo or three PCs can represent 61.65% or 77.78% of the variance and
o on.

.4. Dynamic neural network architecture for modeling the SBR

Six steps were carried out to design a dynamic neural network
or SBR modeling as described below.

.4.1. Selection of DANN structure
The network contains three layers as shown in Fig. 7. The train-

ng data set consists of 14 batch data; each DANN was trained with
0 batches and tested with three other batches. The remained batch
as used for validation.

In the training step, the ANN can converge to a poor local min-
mum. For this reason, the training was started with 30 different
nd random initial weights for each ANN. The initial weights were
hosen in the ranges from −0.6 to 0.6 in accordance with the rec-
mmendations of Al-Shayji [30]. By testing several different initial
onditions, the robust network performance was verified.

Another important factor in ANN design is the type of transfer
activation) functions. To select the most suitable transfer function
or the system, different kinds of activation functions were exam-
ned including linear, sigmoid and hyperbolic tangent functions. At
he end, the hyperbolic tangent function gave the best performance
ompared to other activation functions in the learning process and
as chosen to be the activation function as given below:

(x) = tan h(x) = ex − e−x

ex + e−x
(2)
.4.2. Delay of dynamic network
One of the main steps in the procedure of dynamic neural net-

ork design is finding lag time between the output vector y(t) and
nput vector u(t). This is carried out with the aid of correlation
oefficient matrix. The correlation coefficient matrix represents the

able 3
rinciple component extraction.

Principal component
number

Variance Variance captured
by this PC (%)

Accumulative
variance (%)

PC1 5.899 39.331 39.331
PC2 3.348 22.320 61.651
PC3 2.419 16.131 77.783
PC4 1.434 9.564 87.348
PC5 0.974 6.499 93.487
PC6 0.461 3.079 96.927
0.3–1.8 Dimensionless
0.051 ± 0.01 d−1

0.33 ± 0.025 Dimensionless
: K0 20–40 mg/l

normalized measure of the strength of linear relationship between
the variables in an input matrix, in which rows are observations and
columns are variables (each column represents a separate quantity)
[2]. In this study, the input matrix for this analysis was 11 × 7. Its
rows were observations in different sampling times and its columns
were the variables. Correlation analysis was performed, whereas
the first column was either S or VSS and the rest were PC1 to PC6.
Eventually, the inspections of the obtained correlation coefficient
matrix (7 × 7) revealed that y(t) was one time step behind of u(t).

2.4.3. Training algorithm and network performance criteria
The performance of neural network model was evaluated in

terms of root mean square (RMSE) criterion. The RMSE performance
index was defined by the following equation:

RMSE =

√∑P
p=1(yi − ŷi)

2

P
(3)

where P is the number of input patterns, ŷi is the predicted
network output and yi is the measured (desired) output values.
During the training process, the root mean squared error (RMSE)
in the function (Eq. (3)) was minimized by adjusting the network
parameters.

Another widely used criterion is the coefficient of determination
(R2) or regression analysis. R2 provides a measure of the strength
of the correlation. The best known formula to calculate this index
is the Pearson product–moment correlation coefficient as follows:

R2 =

⎡
⎣ ∑

p(ŷi − ŷi,ave)(yi − yi,ave)√∑
p(ŷi − ŷi,ave)

√∑
p(yi − yi,ave)

⎤
⎦

2

(4)

Levenberg–Marquardt training method was applied in order
to improve convergence speed and performance of the network
[2,31–34].

The DANNs were trained in an on-line mode. That is, the weights
were updated after each training pattern was presented. The order
of presenting training patterns to the DANNs was randomized for
each epoch to reduce the probability of converging in a local mini-
mum as recommended by Haykin [2].
2.4.4. Training stop criterion for generalization improvement
Over fitting is a major problem that occurs during neural net-

work training. The error on the training set can be driven to a very
small value. However, when new data are presented to the network,
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he error is larger. One of the effective methods to ensure general-
zation and avoid over fitting is early stopping. The available data
n this method are divided into three subsets. The initial subset is
he training set, which is employed for calculating the gradient and
pdating the network weights and biases. The validation subset is
he second. The error on the validation set is observed while the
raining of the network. The validation error reduces through the

arly phase of training, similar to the training set error. However,
he error on the validation set usually begins to move upward, when
he network begins to over fit the data [2].

Fig. 8 displays the over fitting region. When the validation error
ncreased for a specified number of iterations (10 iterations), the

ig. 4. Illustration of the procedure to find an optimal number of hidden neurons
ccording to leave-one-out cross-validation method.
Fig. 5. The details of preprocessing procedure for converting SBR model variables
to input vectors of DANN model.

training was stopped and the weights and the biases at the point of
minimum validation error were recorded.

3. Results and discussion

Two values of RMSE were obtained from Section 2.2.2 and Fig. 4.

The RMSE t describes the fitting to the training data and RMSE loocv

depicts the generalization capability acquired by leave-one-out
cross-validation technique. Fig. 9(a) and (b) displays these two
RMSE versus the number of neurons, respectively. In the selection
of the number of hidden neurons, priority was given to that num-

Fig. 6. The proportion of each PC to represent the total variance.
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which the substrates were fed into the reactor. Fig. 11 displays that
the soluble COD curves quickly ascend at the beginning of the pro-
cess. This happened since the rate of substrate degradation was
less than its feed rate and a period of time was needed for the
Fig. 7. Dynamic artificial neural network topology for modeling the SB

er of neurons in which RMSE loocv met its minimum as shown in
ig. 9(b). This figure indicates that the minimum occurs when there
re 4 hidden neurons.

In Fig. 10(a) and (b), a regression analysis between the predicted
utputs and the experimental values was carried out. As it is evi-
ent from these figures, for both S and VSS concentrations the slope
nd the correlation coefficient are relatively close to 1, pointing out
n acceptable fit. Moreover, these results illustrate that this DANN
odel is generalized and accurate model to anticipate the behavior

f an operational cycle of SBR.
In Figs. 11 and 12, the predicted values of dynamic neural net-
orks and Sun’s SBR model are compared to the experimental data.
verall observation of these figures reveals that the DANN predicts

he behavior of the SBR better than Sun’s model.

ig. 8. Early stopping criteria and the trends of training, validation and testing
ubsets.
connections to the neurons are omitted to simplify the presentation).

The first 60 min of the experiments was filling period, during
Fig. 9. The effects of the number of hidden neurons on the average RMSE (a) RMSE t,
fitting to the training data (b) RMSE loocv, generalization capability acquired by
leave-one-out cross-validation technique.
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Table 4
Error analysis obtained for training and testing sets data.

Data subset Mean absolute error RMSE R2 Relative error (%)

S VSS S VSS Overall

0.975 0.983 8.77 2.032 2.11
0.951 0.962 4.289 2.256 2.6

m
s
r
T
i
f

a
t
c
c

F
f

S VSS S VSS

Training set 1.851 75.66 0.182 0.112
Testing set 1.26 84 0.318 0.217

icroorganisms to acclimate to the substrates. Afterwards, sub-
trate degradation was quickened reducing the feed accumulation
ate, leading to a stationary phase of substrate concentration curve.
his tendency insisted until filling stage was ended. In Fig. 11, there
s a sharp decline in the curve after the termination of substrate
eeding.

Fig. 12 depicts the experimental data as well as neural network

nd Sun’s model predictions for VSS concentration. It shows the
rends of neural network predictions and experimental data are
lose, indicating the model ability to predict VSS concentration
hanges within the operational cycle.

ig. 10. Regression analysis between predicted outputs and the experimental values
or: (a) S concentration and (b) VSS concentration.

Fig. 11. Comparison between the DANN predicted values for remaining soluble COD,
with Sun’s SBR model and experimental data during an operational cycle.
Fig. 12. Comparison between the DANN predicted values for VSS concentration,
with Sun’s model and experimental data during an operational cycle.

Table 4 shows the relative errors of the DANN model for train-
ing and testing sets were 2.11% and 2.6%, respectively, indicating
the generalization ability of the model. This table also shows the

amounts of regression analysis between the predicted output and
the experimental data are reasonable for both training and testing
data sets, proving the accuracy of the suggested SBR model. Table 5
displays the overall relative error for DANN model is over two and
half times lower than that of the Sun’s model.

Table 5
Comparison between DANN and Sun’s model.

SBR models Mean absolute error Relative error (%)

S VSS S VSS Overall

Generalized DANN
model based on
MPCA

1.26 84 4.289 2.256 2.6

Sun’s model 2.2 256.08 10.46 6.87 6.89
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. Conclusions

In this study, a methodology based on the application of dynamic
rtificial neural networks for modeling the batch rectors has been
resented. The data of 14 SBR batches were organized in a three-
ay array and unfolded to a two-dimensional matrix. The matrix
as then treated using MPCA method.

The results of training and testing data sets were determined and
ompared in terms of the RMSE and performing a regression anal-
sis that confirmed the accuracy and generalization ability of the
etwork. Simulation results of DANN model and Sun’s model were
ompared to the experimental data of a SBR, extracted from the
iterature. The comparison indicated that the DANN model could
redict the process far better than Sun’s model, despite it is much
ore complicated than DANN model.
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